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1. Introduction
Blockchain technology, which until recently has been known mostly in small 

technological circles, is bursting throughout the globe. Recent years have witnessed a 

growing number of cryptographic tokens that are being introduced by researchers, 

private sector companies and NGOs. The expanding adoption of such Blockchain based 

cryptocurrencies gives birth to a new kind of rising economy which in turn presents a 

new type of challenges for policy makers and regulators, due to its potential economic 

and social impact that could fundamentally alter traditional financial and social 

structures.

Launched in July 2015 [1], the Ethereum Blockchain is a public ledger that keeps 

records of all Ethereum related transactions. The ability of the Ethereum Blockchain to 

store not only ownership, similarly to Bitcoin, but also execution code, in the form of 

”Smart Contracts”, has recently led to the creation of a large number of new types of 

”tokens”, based on the Ethereum ERC20 protocol. These tokens are ”minted” by a 

variety of players, for a variety of reasons, having all of their transactions carried out 

by their corresponding Smart Contracts, publicly accessible on the Ethereum 

Blockchain. As a result, the ERC20 ecosystem constitutes one of the most fascinating 

examples for highly varied financial ecosystems, whose entire monetary activity is 

publicly available from its inception.

Our work presents an analysis of the dynamical properties of the ERC20 protocol 

compliant crypto-coins’ trading data, using a network theory prism. We first form a 

network from the monetary activity during two and a half years of ERC20 transactions 

over the Ethereum Blockchain. We show that the ERC20 financial ecosystem, despite 

being infinitely faceted and potentially comprised of unlimited amount of single-

serving wallet addresses, still adheres to key properties known to characterize 

networks of human interactions.

Furthermore, we present a thorough model-based analysis of the dynamics of the 

underlying network of this rising economy. We propose observing γ, the power of the 

degree-distribution, as a meta-parameter of the network. We demonstrate how this 

meta-parameter is able to describe the dynamics and consolidation process of the 

network through time, unlike traditional economic indicators of ERC20 ecosystem 

which present highly unstable and unpredictable dynamics. In particular, we 

demonstrate that the dynamics of the Ethereum economy, as captured by γ can be 

modeled using an under-damped harmonic oscillator, substantiating the equilibration 
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of this economy over time. Moreover, this analytical model enables the prediction of an 

economic network’s future dynamics, and specifically the γ parameter associated with 

its popularity equality. In this work we have examined the accuracy of such prediction 

over 12 months’ time.

In conclusion, by applying network theory methods, we demonstrate clear structural 

properties and converging dynamics, indicating that this ecosystem functions as a 

single coherent financial market stabilizing along time, despite major endogenous and 

exogenous forces that constantly act upon it. These results can hold great promise 

from several aspects. First, they demonstrate the use of network theory methodology 

on the emerging field of Blockchain economy, enabling to capture the maturity and 

stabilization of an otherwise apparently volatile economy. Secondly, the ability to 

estimate future dynamics of the ERC20 underlying network (or other digital 

economies) may provide policy makers with a useful tool for designing regulations and 

mechanisms intended to nip undesired interventions and manipulations in the bud. 

These anticipatory measures might aid in addressing a variety of economic and social 

challenges rising from the global use of the Blockchain technology. Lastly, these results 

suggest that a better understanding of traditional markets could become possible 

through the analysis of fine-grained, abundant and publicly available data of 

cryptomarkets.

2. Background and Related Work
Blockchain’s ability to process transactions in a trust-less environment, apart from 

trading its official cryptocurrency, the Ether, presents the most prominent framework 

for the execution of ”Smart Contracts” [2]. Smart Contracts are computer programs, 

formalizing digital agreements, automatically enforced to execute any predefined 

conditions using the consensus mechanism of the Blockchain, without relying on a 

trusted authority. They empower developers to create diverse applications in a Turing 

Complete Programming Language, executed on the decentralized Blockchain platform, 

enabling the execution of any contractual agreement and enforcing its performance.

Moreover, Smart Contracts allow companies or entrepreneurs to create their own 

proprietary tokens on top of the Blockchain protocol [3]. These tokens are often pre-

mined and sold to the public through Initial Coin Offerings (ICO) in exchange of Ether, 

other crypto-currencies, or Fiat Money. The issuance and auctioning of dedicated 

tokens assist the venture to crowd-fund their project’s development, and in return, the 

ICO tokens grant contributors with a redeemable for products or services the issuer 

commits to supply thereafter, as well as the opportunity to gain from their possible 
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value increase due to the project’s success. The most widely used token standard is 

Ethereums ERC20 (representing Ethereum Request for Comment), issued in 2015. The 

protocol defines technical specifications giving developers the ability to program how 

new tokens will function within the Ethereum ecosystem.

This brand-new market of ERC20 compliant tokens is fundamental to analyze, as it is 

becoming increasingly relevant to the financial world. Issuing tokens on top of the 

Blockchain system by startups and other private sector companies is becoming a 

ubiquitous phenomenon, inducing the trade of these crypto-coins to an exponential 

degree. Since 2017, Blockchain startups have raised over 7 Billion dollars through 

ICOs. Among the largest offerings, Tezos raised $232M for developing a smart 

contracts and decentralized governance platform; Filecoin raised $205M to deploy a 

decentralized file storage network; EOS raised over $185M to fund scalable smart 

contracts platform and Bancor, who managed to raise $153M for deploying a 

Blockchain-based prediction market.

Apart from being formed by countless stake-holders and numerous tokens, the ERC20 

transactional data also presents full data of prices, volumes and holders distribution. 

This, alongside with daily transactions of anonymized individuals is otherwise scarce 

and hard to obtain due to confidentiality and privacy control, hence providing a rare 

opportunity to analyze and model financial behavior in an evolving market over a long 

period of time.

There has been a surge in recent years in the attempt to model social dynamics via 

statistical physics tools [4], ranging from opinion dynamics, through crowd behaviors 

to language dynamics. The physical tools used are also varied, ranging from Ising 

models [5] to topology analysis [4]. More specifically, previous studies have 

implemented physics-based approaches to the analysis of economic markets. 

Econophysics have attempted to describe the dynamical nature of the economy with 

different, and increasingly sophisticated physical models. Frisch [6], who started this 

trend, has suggested to use a damped oscillator model to the economy post wars or 

disasters, with the assumption that there is an equilibrium state that has been 

perturbed. Since then, many new models have been suggested, ranging from quantum 

mechanical models [7][8] to chaos theory [9][10]. However, all of these models have 

attempted to describe the economy, represented by a singular value, e.g. stock market 

prices, whereas the underlying network of the economy has not been addressed.

Network science, however, has exceedingly contributed to multiple and diverse 

scientific disciplines in the past two decades, by examining exactly diverse network 
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related parameters. Applying network analysis and graph theory have assisted in 

revealing the structure and dynamics of complex systems by representing them as 

networks, including social networks [11][12][13], computer communication networks 

[14], biological systems [15], transportation [16][17], IOT [18], emergency detection 

[19] and financial trading systems [20][21][22].

Most of the research conducted in the Blockchain world, was concentrated in Bitcoin, 

spreading from theoretical foundations [23], security and fraud [24][25], to some 

comprehensive research in network analysis [26][27] [28]. The world of Smart 

contracts has recently inspired research in aspects of design patterns, applications and 

security [29][30][31][32], policy towards ICOs has also been studied [3]. Some 

preliminary results examining network theory’s applicability to ERC20 tokens has been 

made in [33]. In this work we aim to examine how this prominent field can enhance the 

understanding of the underlying structure of the ERC20 tokens trading data, and 

model it’s stabilization process from a network perspective over time.

3. Methodology

3.1  Data

In order to preserve anonymity in the Ethereum Blockchain, personal information is 

omitted from all transactions. A User, represented by their wallet, can participate in 

the economy system through an address, which is attained by applying Keccak-256 

hash function on his public key. The Ethereum Blockchain enables users to send 

transactions in order to either send Ether to other wallets, create new Smart Contracts 

or invoke any of their functions. Since Smart Contracts are scripts residing on the 

Blockchain as well, they are also assigned a unique address. A Smart Contract is called 

by sending a transaction to its address, which triggers its independent and automatic 

execution, in a prescribed manner on every node in the network, according to the data 

that was included in the triggering transaction.

Smart Contracts representing ERC20 tokens comply with a protocol defining the 

manner in which the token is transferred between wallets and the form in which data 

within the token is accessed. Among these requirements, is the demand to implement 

a transfer method, which will be used for transferring the relevant token from one 

wallet to another. Therefore, each transfer of an ERC20 token will be manifested by a 

wallet sending a transaction to the relevant Smart Contract. The transaction will 

encompass a call to the transfer method in its data section, containing the amount 

being transferred and its recipient wallet. Each such token transfer results in altering 
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the ’token’s balance’, which is kept and updated in its corresponding Smart Contract’s 

storage.

We obtain the ERC20 transactions basing on the further requirement of the ERC20 

protocol, demanding that each call to the transfer method will be followed by sending 

a Transfer event and updating the event’s logs with all relevant information regarding 

the token transfer. We therefore call an Ethereum full node’s JSON API and fetch all 

logs matching to the Transfer event structure. Parsing these logs result in the 

following fields per transaction: Contract Address - standing for the address of the 

Smart Contract defining the transferred token, Value - specifying the amount of the 

token being transferred, Sender and Receiver addresses, being the wallet addresses of 

the token’s seller and buyer, correspondingly.

We have retrieved all ERC20 tokens transactions spreading between February 2016 

and June 2018, resulting in 88, 985, 493 token trades, performed by 17, 611, 649 

unique wallets, trading 51, 281 token addresses. Due to the restriction on changing 

and tempering Smart Contracts, any modification made to a token’s designated Smart 

Contract involves a definite change in its associated Contract Address. As a result, a 

token can change addresses throughout its lifespan, though for any point in time, it 

will only be assigned to a single relevant Contract Address. Therefore, the above-

mentioned amount of unique contract addresses serves merely as an upper bound to 

the amount of unique tokens. Since we do not restrict ourselves to a specific type of 

token, but observe the network as a whole trading system, this non-unique 

identification of tokens doesn’t affect our analysis of the network.

The dataset of ERC20 tokens transactions is extremely diverse and wide-ranging, 

where not only any ERC20 token might correspond to multiple contract addresses, and 

therefore being considered as various different tokens by our analysis, but also the 

characteristics of the different tokens are extremely varied. For instance, the tokens 

differ in their age, their economic value, activity volume and number of token holders, 

some merely serve as test-runs, others aren’t tradable in exchanges yet, and some, 

according to popular literature, are frauds, all residing next to actual real-world 

valuable tokens.

3.2  Graph Analysis

In order to perceive the network’s structure and assess the connectivity of its nodes, 

one should examine the network’s degree distribution, considering both in-degree and 

out-degree, indicating the number of incoming and outgoing connections, 
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correspondingly. The degree distribution P (k) signifies the probability that a randomly 

selected node has precisely the degree k.

In random networks of the type studied by Erdo¨s and Re´nyi [34], where each edge is 

present or absent with equal probability, the nodes’ degrees follow a Poisson 

distribution. The degree obtained by most nodes is approximately the average degree 

k¯ of the network. These properties are also manifested in dynamic networks [35]. In 

contrast to random networks, the nodes’ degrees of social networks (such as the 

Internet or citation networks) often follow a power law distribution [36]:

The power law degree distribution indicates that there is a non-negligible number of 

extremely connected nodes even though the majority of nodes have small number of 

connections. Therefore, the degree distribution has a long right tail of values that are 

far above the average degree. Power law distributions can be found in many real 

networks, Newman [13] summarized several of them, including word frequency, 

citations, telephone calls, web hits, or the wealth of the richest people.

3.3  Power-law Fit

The degree distribution of a given graph is plotted on a double logarithmic scale, over 

20 logarithmically spaced bins, between the minimal and maximal degrees of relevant 

graph. We’ve selected splitting the data along 20 bins, in order to accommodate both 

small networks, having small sets of vertices and consequently possibly small degree 

sequences, and also large networks obtaining much larger variance of the degree set.

Several approaches are known in literature for fitting the power law distribution to a 

linear model in the double logarithmic scale and for estimating its goodness-of-fit, see 

for example [37]. We have chosen to fit the bins’ heights to a Linear Model, using 

ordinary Least Squares Regression, while considering all binned data points, and not 

only their tail. We further chose to verify the goodness-of-fit of the power-law model to 

the degree distribution by calculating the coefficient of determination of the fit, i.e. its 

R2, computed as follows:

P(k) = k−γ

R =2 1 − (y − )
k

∑ k ȳ 2

(y −fk)
k

∑ k
2
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where yk = P(k) are the degree distribution values, fk are the modeled degrees by the 

fitted power-law model, and ȳ is the means of the empirical degree distributions: 

. A different methodology for estimating ERC20 network γ values and their goodness-

of-fit can be found in [38].

3.4  Oscillation Dynamics

We consider the ERC20 system as a social physical system and thus use physical 

models to analyze it. We hypothesize that the ERC20 system behaves as a dynamical 

system approaching its equilibrium state, which can be modeled as a damped 

harmonics oscillator.

A harmonic oscillator is a system acted upon by a force negatively proportional to its 

perturbation from its equilibrium state. Physical systems that are modeled in this way 

are springs and swings. Systems that also experience a velocity-dependent friction-like 

force, e.g. air resistance, are modeled by a damped harmonic oscillator. The dynamical 

equation for these models is:

where x is the perturbation from equilibrium, m is the mass, k is the spring constant 

and c is the viscous damping coefficient. The resonant frequency of the system is 

defined as  and which represents how strong the damping is, compared to 

the resonant frequency, such that an over-damped system ζ > 1 does not oscillate, but 

exponentially converges to the equilibrium state, whereas an under-damped system ζ <

 1 oscillates with a modified frequency  during its exponential 

convergence. The case of critically damped system ζ = 1 is an important one in 

physics, but does not relate to the analysis presented below.

Given an under-damped oscillator, the dynamics of the system can be described by the 

following function:

Here ϕ is the phase of the oscillation and x∞ is the equilibrium state. In this work, we 

will use the under-damped oscillator in order to model the dynamics of the ERC20 

network meta-parameter γ and extract the parameters of its dynamics.

y
n
1

k

∑ k

=
dt2
d x2 –kx–c

dt
dx

ω =0 m/k

ω =1 ω0 1−ζ2

x(t) = A⋅ e ⋅ sin(ω +−ω ζt0
0 1−ζ t2 ϕ) + x∞
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4. Results

4.1  ERC20 Dynamics: A Semantic Approach

Our main objective in this paper is to explore and comprehend the dynamics of the 

diverse network of ERC20 over time. The first, and most obvious methodology to 

examine the network’s evolvement through time, is using a traditional semantic 

approach, analyzing ERC20 data characteristics over time. We therefore observe 

weekly rolling window snapshots of the ERC20 transactional data, wd, throughout FT :

and analyze the evolution of several intrinsic properties of the data.

We first observe the number of traded ERC20 tokens within each week of data, wd, 

throughout the entire FT timespan, as is presented in Fig. 1. Due to the huge inflation 

in the number of ERC20 tokens created during FT , it’s of no surprise that the rolling 

count of traded tokens presents a general increasing tendency. However, it’s not 

monotonous, as there were times the number of weekly traded tokens presented 

evident and not negligible decreasing patterns.

wd = [d−7, d), ∀d ∈ FT
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This instability becomes even clearer when observing the number of unique buying 

and selling wallets over time, depicted in Fig. 2. The first year of data presents not 

only unstable dynamics of these two properties, but also reveals how the ERC20 

network shifts its vocation multiple times from a Buyers Ecosystem, where more 

unique buyers than sellers exist, into a Sellers Ecosystem, where more unique sellers 

take part in the weekly ERC20 transactions snapshot, and vice-versa. The second year 

of data reveals the network has transformed into a Buyers Ecosystem, though the 

ratios between unique buyers and sellers continue to undergo drastic changes.

Figure 1: the number of unique traded tokens for each d related week, presented both in linear and logarithmic scale (right and left 

panels, correspondingly), where the logarithmic scale emphasizes signal diversity during the first year, and the logarithmic scale 

presents unstable behavior during the last year of data.
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Figure 2: Number of unique selling and buying wallets within [d − 7, d) presented both in linear and logarithmic scale (right and left 

panels, correspondingly), where the logarithmic scale emphasizes signal diversity during the first year, and the logarithmic scale 

presents unstable behavior during the last year of data.
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We further analyze the sizes of the largest buying and selling hubs, in other words, the 

maximal in and out-degrees over time, presented in Fig. 3. We note that similarly to 

the dynamics of total number of buyers and sellers presented in Fig. 2, this semantic 

property also displays major volatility, where the network frequently shifts from having 

a largest selling hub to having a largest buying hub and vice-versa.
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We finally observe the dynamics of total number of active wallets throughout time, and 

the evolution of number of transactions among them over time, depicted in Fig. 4. 

These two properties present the same phenomena of instability, where smooth and 

monotonic trends are not evident, and drops of over 60% exist along FT , and no 

consolidation process is evident in this prism.

Figure 3: Size of largest selling hub and largest buying hub within [d − 7, d) presented both in linear and logarithmic scale (right 

and left panels, correspondingly), where the logarithmic scale emphasizes signal diversity during the first year, and the logarithmic 

scale presents unstable behavior during the last year of data.
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Concluding, the semantic, more traditional approach for reviewing the network’s 

evolution through time, manifests a highly unstable, unpredictable ecosystem. This 

erratic behavior, across multiple properties, might imply the network’s inability to 

reach equilibrium.

Figure 4: Number of weekly active wallets and transactions volume, presented both in linear and logarithmic scale (right and left 

panels, correspondingly), where the logarithmic scale emphasizes signal diversity during the first year, and the logarithmic scale 

presents unstable behavior during the last year of data.
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4.2  ERC20: Network Theory Applicability

Throughout the last two decades, network theory has aided in modeling and 

comprehending a variety of complex systems, including social networks, transportation 

networks, financial trading systems and many more. We’d therefore like to examine 

whether a more network-related prism could be of use to explore whether the ERC20 

network undergoes a consolidation process throughout the examined timespan.

Network theory states that degree distributions of human related networks, and 

economic systems in particular, strongly aspire to be arranged in a scale free, power-

law governed regime. Thus, we first explore its networks’ degree distribution, and 

verify that the ERC20 network satisfies this known characteristic of other real-world 

networks. We therefore construct a directed graph, consisting of all ERC20 

transactions during the examined 2 years period, namely:

Definition 1 Let FT denote the Full Timespan between February 2016 and June 2018. 

The ERC20 Full Transactions Graph, GF T (V, E), is a directed graph based on all 

transactions made during FT, with any of the traded ERC20 tokens. The set of vertices 

V consists of all ERC20 trading wallets in the period:

V := {vi wallet wv bought or sold any token during FT} (5)

and the set of edges E ⊆ V × V is defined as:

E := {(u, v)i wallet wu sold any token to wv during FT} (6)

The resulting graph consists of 6, 890, 237 vertices and 17, 392, 610 edges. Out-going 

edges depict transactions in which wallet wu sold any type of ERC20 token to other 

wallets, and in-coming edges to u are formed as result of transactions in which wu 

bought any ERC20 token from others. Out-degree of vertex u represents the number of 

unique wallets buying tokens from wu and its in-degree depicts the number of unique 

wallets selling tokens to it.

Surprisingly, despite the great variance between the traded tokens in the network, we 

discovered that the degree distribution depicts a strong power-law pattern, as 

presented in Fig. 5. Hence the ERC20 Full Transactions Graph, GF T , displays similar 

connectedness structure to other real-world networks, such as [11] [12] [13], 

presenting a non-negligible number of highly connected nodes even though the 

majority of nodes have small number of connections, both in buying and selling 

transactions.
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However, in order to apply network theory to modeling ERC20s’ dynamics over time, 

we must also verify that temporal snapshots of this network also adhere to a power-law 

model. We therefore form and analyze weekly transactions graphs, each of which is 

based on one week of all ERC20 transactions. Formally:

Figure 5: Analysis of Blockchain network dynamics for a 2 years period from February 2016 to June 2018. The networks nodes 

represent ERC20 wallets and edges are formed by ERC20 buy-sell transactions. Outgoing degree of a node reflects the number 

of unique wallets receiving funds from that node, regardless of the token being transferred, and vice-versa for incoming 

degree. Both outgoing and incoming degrees present a power-law distribution, similarly to what was demonstrated in analysis 

of mobile phone, citation data and many other real-world networks (see citation 13).
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Definition 2 Let FT denote the Full Timespan between February 2016 and June 2018. 

Given a day t ∈ FT, the ERC20 Weekly Transactions Graph, Gt(Vt, Et), is a directed 

graph based on all transactions made during [t − 7, t), trading any of the ERC20 

tokens. The set of vertices Vt consists of all ERC20 trading wallets in that period:

Vt := {vi wallet wv bought or sold any token during [t − 7, t)} (7)

and the set of edges Et ⊆ Vt × Vt is defined as:

Et := {(u, v)i wallet wu sold any token to wv during [t − 7, t)} (8)

The out (in) degree distributions, , signifies the probability that a 

randomly selected node v ∈ Vt has precisely out-degree (in-degree) k. When out-degree 

distribution follows a power-law model, it satisfies:

And correspondingly, the in-degree complies with:

Fig. 6 demonstrates that empirical observations, in form of ERC20 weekly transactions 

graphs coincide with theory, presenting a strong fit of both weekly out and in-degree 

distributions to the power-law model.

P (k)(P (k))t
out

t
in

P (k) =t
out k−γt

out

P (k) =t
in k−γt

in
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It is also to be noted that a different methodology to model the ERC20 temporal 

degree distribution and to estimate its γ parameters was applied in [38] and also 

presented high agreement with a truncated power-low model. These fits to the power-

law model demonstrate that Network Theory is applicable to the ERC20 network, 

despite its extremely diverse and non-homogeneous nature, giving rise to the 

possibility of harnessing this domain’s power in order to investigate and model the 

dynamics of ERC20 network over time.

4.3  ERC20 Dynamics: The Oscillating Network Model

During the examined timespan of 2.5 years of ERC20 transactions, the network keeps 

evolving and changing its dynamics. Not only does the rising public interest in 

Blockchain and tokens induce an exponential growth in transactions’ volume, but the 

traded tokens on the network change as well, as new tokens are established and 

others lose their impact and decay.

This dynamical nature of the ERC20 economy leads us to examine the degree 

distribution over time, as manifested by its associated γ values. We thereby construct 

878 weekly transactions graphs, by a sliding window of 1 day, for each day in the 2.5 

years period between February 2016 to June 2018:

Figure 6: In-Degree distribution , left panel) and out-degree distribution , right panel) of the weekly transactions 

graph , for  = January 31st, 2018. Outgoing degree of a vertex reflects the number of unique wallets receiving funds 

from that vertex, and vice-versa for incoming degree. Both outgoing and incoming degrees present a power-law distribution, 

obtaining similar  and  values to the achieved corresponding γ-s for the Full Transactions Graph (See Fig. 5)

(P (k)t0
in (P (k)t

out

G (V ,E )t0 t0 t0 t0

γt0
out γt0

in
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We calculate both in and out degree distributions for each of these weekly graphs,  

and respectively, and fit each of them to the power-law model.

In order to examine the goodness-of-fit of the power-law model to the empirical degree 

distribution for each of the weekly graphs, we’ve calculated the R2 of each such fit. 

The results are depicted in Fig. 8, presenting that for over 99% of t ∈  FT , both  

and , fits to power-law yield an R2 ≥ 0.8. Moreover, both  and  display an 

improving fit to power-law as t increases, manifested by the convergence of R2 

towards 1.

We next examine the dynamics of the power-law fit, and explicitly the dynamics of its 

associated γ values along time. We postulate that any network of human related 

transactions, has a characteristic stable state, in the form of  and , to which the 

network strives to converge:

Empirical observations of both γin and γout coincide with this hypothesis, as can be 

seen in Fig. 7, and can be efficiently modeled as an Harmonic Under-Damped 

Oscillator, formally ∀t ∈ FT :

The oscillator fitted to the entire data of γ values along time FT is referred to oscFT (t).

Gt(V ,E )
t∈FT

⋃ t t

Pd
in

Pd
out

Pt
in

Pt
out Pt

in Pt
out

γ∞
in γ∞

out

γt
in

t→∞
γ , γ∞
in

∞
out

t→∞
γ∞
out

osc(t) = A⋅ e ⋅ sin(ω0 +−ω0ζt 1−ζ2t ϕ) + γ∞
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Figure 7: ERC20 transactional network temporal development, in a network related prism, demonstrating the underlying 

consolidation process the network undergoes. Evolvement of incoming degree distribution gradient, , is depicted in the upper 

panel and out-degree distribution gradient  is displayed in the lower panel. Both gradients converge to their stable states  

and  correspondingly, following a Harmonic Under-Damped Oscillator model.

γt
in

γt
out γ∞

in

γ∞
out
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The under-damped oscillator model is in fact an extension of the regular single-

parameter model, which suggested γ as a constant stable state, to a new model 

governed by five parameters: (i) λ = ω0ζ representing the exponential decay, (ii) 

 standing for the angular frequency, (iii) γ∞ for the stable state to which 

Figure 8: Left panel presenting R
2
 of both Incoming and outgoing degree distributions fits to power-law, for each Gt, t ∈ FT . Right 

panel presents and compares the -s’ R
2
 distributions. As can be noted for both  and , over 99% ofthe fits to power-law 

yield R
2
 ≥ 0.8, and both present an improvement pattern over time, as they converge to 1 throughout time.

Gt Pt
in Pt

out

ω = ω0 1−ζ2
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the system converges, (iv) A representing the maximal amplitude of the oscillation and 

(v) ϕ for the phase shift. The parameters of fitted oscillators to γin and γout on the 

entire FT ,  and  correspondingly, are presented in Table 1 and Table 2.

Once the modeling of the ERC20 network dynamics by an under-damped oscillator is 

established, this analytical model can also be used for predictive purposes. We have 

examined the accuracy of predicting the γ parameter, associated with popularity 

equality, over 12 months’ time. Full details of these predictive abilities can be found in 

[33].

4.4  ERC20 Dynamics: Network Theory VS Traditional Approaches

In order to determine that the variances of  and  form a unique indicator for 

unveiling the network’s consolidation process, we explicitly compare their variance 

dynamics to the variance of the previously analyzed, traditional properties, including 

network’s evolving size, both in vertices and in edges perspectives, number of unique 

buyers, sellers and of ERC20 tokens traded over each such weekly transactions 

network. Since the mean values of the compared standard deviations are highly 

different in value and scale, we compare their normalized versions, i.e. the Coefficients 

of Variation:

osc (t)FT
in osc (t)FT

out

γt
out γt

in
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Fig. 9 presents a comparison between the coefficients of variation of traditional 

indicators and network originated parameters. It demonstrates that the traditional 

parameters exhibit higher variance than those of  and ) along the entire two 

years timespan. Furthermore, the economic indicators do not present consistent decay, 

indicating lack of convergence of the associated properties. Nevertheless, both 

and  present a consistent decreasing trend, indicating ongoing convergence of 

the degree distribution gradients along time.

To conclude, this analysis demonstrates the underlying temporal consolidation process 

the ERC20 ecosystem undergoes along 30 months of its activity, until reaching an 

equilibrium with respect to the essential network characteristics,  and . Though 

unstable and erratic in many aspects, amongst all in rates, number of active wallets 

and activity volume, when observing the ERC20 economy from a network theory prism, 

one can conclude the network undergoes a steady consolidation process, reaching an 

equilibrium, in a network sense.

CV (x) :=
mean(x)
std(x)

γt
in γt

out

CV (γ )t
in

CV (γ )t
out

Figure 9: Network stabilizing process manifested by the decreasing trend of coefficient of variation of degree distribution gradients, 

 and . The variance comparison between the latter and other basic aspects s.a. number of buyers, sellers, vertices, edges 

and number of traded tokens for each Gt, t ∈ FT , affirms this network-related measure as a significant, and so far unique, index for 

the ERC20 network’s consolidation process.

γt
out γt

in

γt
out γt

in
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5. Discussion
In this contribution, we presented evidence suggesting that the extremely non-

homogeneous [38] ERC20 economy still conforms to the statistics of other social 

networks [11] [13] [14] [15] [17] [21]. This was demonstrated by examining both the 

incoming and outgoing degree distributions, and verifying their compliance to a scale-

free power-law model, evident in Fig. 5. A-priori there is no theoretical justification 

that an amalgamation of non-related tokens, each with a different source and 

functionality, will result in a cohesive, single network behaving according to the well-

established principles of network theory. Our results support the hypothesis that the 

ERC20 assembles a single community.

We further wished to go beyond a static view of the ERC20 ecosystem, and explored its 

dynamics along time. We first presented how observing the dynamics of ERC20 

throughout semantic, more traditional, characteristics of the data, such as number of 

traded tokens over time, number of active wallets and transaction counts over time, 

manifest a highly unstable and unpredictable system, as can be seen in figures 1, 2 and 

4. These observations raised the concern of whether the ERC20 system can be 

considered as a stabilizing, equilibrating economy.

We have shown that each weekly transactions network along the examined 2.5 years 

period, still conforms to a power-law degree distribution, as shown by the goodness-of-

fit parameter, R2 in Fig. 8, signifying that each individual week behaves as a scale-free 

network. This observation enabled reassessing the dynamics of ERC20 using a network-

theory perspective. Numerous network-related meta-parameters have been analyzed in 

the study of social networks, ranging from the degree distribution of the network, its 

average path length, the clustering coefficient and to network’s spectral properties 

(see [36]).

Here we have chosen to focus on the dynamics analysis of the most basic and the 

highly investigated network characteristic of them all, studying the development of the 

network’s degree distribution, manifested by its associated power, γ, throughout time. 

Inspired by macro-scale market dynamics [6] [9], which demonstrated an oscillatory 

stabilization process, we analyzed the exponents of in and out-degree distribution (γin 

and γout) and studied to which extent their dynamics can be modeled by an under-

damped harmonic oscillator.

To better comprehend the source of γ’s oscillating dynamics, one must integrate all the 

aforementioned results. First, it is prudent to understand what a scale-free network 
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means, and more importantly for this discussion, what γ, the exponent of the power-

law degree distribution signifies. The power of the degree distribution stands for the 

ratio between the number of disconnected (or lightly-connected) wallets and the size of 

the network’s largest hub. For instance, a small γ means the ratio between number of 

disconnected (or lightly-connected) wallets and the size of the largest hub is small. 

Indeed by observing the dynamics of buyers and sellers sizes in Fig. 2 and the 

dynamics of largest selling and buying hubs sizes in Fig. 3, it becomes evident that γin 

and γout dynamics correlate with the changes in these two properties.

We note that ERC20 network dynamics can be roughly divided into two phases, with a 

transition occurring around April 2017, as is evident both from the buyers & sellers 

dynamics (Fig. 2) and from the largest buying and selling hubs sizes dynamics (Fig. 3). 

During the first phase, the numbers of buyers and sellers in the network were quite 

comparable, as were the sizes of the associated hubs, and both γin and γout presented 

large and anti-phase oscillations, signifying an ”overshoot” of the system beyond its 

equilibrium state. This is the hallmark of an under-damped oscillator (as opposed to an 

over-damped one). This overshoot in γin and γout may represent a ”herd” behavior of 

many individuals/wallets (higher density) entering the community, making a small 

number of buying transactions (low in-degree).

During the second phase however, the underlying composition started undergoing 

significant changes, as the largest selling hub became excessively large, accompanied 

with a substantially lower number of active sellers in the network, severely inflicting 

upon the out-degree distribution, correlating with its rather low γout and possibly 

causing the drastically damped oscillations in that period. We further note that γin 

continued presenting oscillatory behavior in the second phase, with γin values higher 

than 2, as the ratio between buyers in the network and the size of the largest buying 

hub remained high.

We would further like to address the inherent differences between the in-degree and 

out-degree distributions, as established by our analysis. Apart from the evident 

dissimilarity in converging patterns presented during the second phase of data, as 

elaborated above, we also find that the under-damped harmonic oscillator fit 

parameters, displayed in Tables 1 and 2 are quite different for γin and γout, 

representing anti-phased dynamics, by an opposite amplitude A and phase ϕ. 

Furthermore, their equilibrium state is rather different, wherein .γ >∞
in γ∞

out
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In order to exhibit a deeper understanding of differences between in and out-degree 

dynamics, we must present a comprehensive overview of the modeling process of both 

γ-s. We first elaborate the established results regarding γin, the power of the in-degree 

distribution. Fig. 7(a) depicts how well the under-damped oscillator model fits the 

entire 2.5 years data of weekly networks’ γin. The goodness of fit of the oscillator 

model to γin was tested by analyzing the residuals plots, verifying they were centered 

around zero (see Fig. ?? and Fig. ??, upper panels). Furthermore, the fitted 

parameters of the under-damped oscillator give remarkable descriptive powers, e.g. 

the damping parameter 1/λin accurately indicates the time at which the network has 

started stabilizing and its noise decreased, as can be seen in Fig. ??(a). Moreover, Fig. 

?? (left panels) demonstrates how the fitted parameters of the oscillator model fitted to 

γin stabilize together and early, prior to the last observable oscillation in actual γin 

values. We further demonstrated the powerful predictive ability of the oscillator model 

for γin. Predicting future values based on fitting to an under-damped oscillator, Fig. ??

(left-panels) shows that damped oscillations during the last year of data can be 

accurately and reliably predicted.

Next we summarize the analysis of γout, the power of the out-degree distribution. 

While Fig. 7 suggests a satisfactory fit to an under-damped oscillator, deeper analysis 

shows some discrepancies. The first discrepancy is the fitted parameter, namely, the 

damping parameter 1/λout, which indicates damping occurs during the first (and only) 

oscillation, as can be seen in Fig. ??, panel (d). The second inconsistency is evident 

through the residuals analysis, presented in Fig. ??(c), indicating how  1 , supplies a 

significant under-estimation of the time when the fit’s noise substantially decreased. 

We further perceived by analyzing the convergence of the oscillator parameters, 

depicted in Fig. ?? (right panels), that γout oscillator’s parameters do not converge, but 

rather undergo a slow monotonic change along time. Finally, when analyzing the 

predictive abilities, seen in Fig. ?? (right panels), we observe that future γout dynamics 

are inadequately predicted by partial oscillator model, fitted to prior data. This 

suggests that a deviation from the oscillatory nature of the out-degree dynamics has 

occurred, as γout is over-estimated, and the predicted oscillations are not manifested 

by actual γout observations (see Fig. ??, panel h for instance).

Taken together, these results suggest that forces beyond those that govern an under-

damped oscillator are at play in the out-degree dynamics. A hint of these forces comes 

from the size-dependency analysis, depicted in Fig. ??, which suggests a phase-

transition in size-space, namely, beyond 104 nodes, after which γ presents significant 
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stabilization. This phase transition occurs surprisingly at the same time that the γin 

oscillator is damped. However, there is a drastic difference of the influence of this 

phase transition on the different γ dynamics: while γin does not appear to be 

influenced by this change, namely, oscillations continue and predictions based on prior 

fits are relatively accurate, γout suffers from a dramatic damping of oscillations and a 

lowered converged γout, compared to predicted oscillator dynamics.

We postulate that the different dynamics presented by γout occurs due to extremely 

large selling hubs, possibly representing exchange wallets, accompanied with a much 

slower rise in lightly connected selling wallets. These two concurrent phenomena 

cause a forced decrease in γout values, leading to the damping of oscillations and the 

lowering of the convergence value of γout. This characteristic of γout correlates with 

[39], who claims that networks featured with γ < 2 are anomalous among the world of 

scale free networks, since their largest hub grows faster than the network’s size, N .
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